If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-14y-4=0
a = 1; b = -14; c = -4;
Δ = b2-4ac
Δ = -142-4·1·(-4)
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{53}}{2*1}=\frac{14-2\sqrt{53}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{53}}{2*1}=\frac{14+2\sqrt{53}}{2} $
| 4x^2+4V7x+7=0 | | 9+3,5=11-0.5g | | 2/3x-5/6=1/4x+1 | | 4v/9=28 | | 4x+25=2x+5 | | 2a/3+5=4 | | 30-y-4y=40 | | 3/4(x-8)=15/2 | | 2a/3=5=4 | | 8x+5=10x+5 | | 5^x-0.9=0 | | 5x+9=15x-11 | | 18+x-2=4x+5 | | {n}{-7}n−7=-4 | | 11(4p-4)-4p=4(7p-7) | | 3/4(x-8)=7*1/2 | | 11n=142 | | 3x-5=11=7x | | 10b2+17b+3=0 | | 3x+35=-4x-4 | | -9y+14=-5(y-7) | | 2+d=13 | | 3x7=17 | | 4y+7-6=15 | | y/8=8/12 | | x/7-5=016)5x-4x+3x+8=8 | | x2+12x+36=0 | | 6x-48=180 | | 9x+2=-2x-31 | | -4(2x-5)-6x=28 | | 6x-43+4x+38=180 | | 6.4=7.9-0.3x |